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Abstract We present interior-point strategies for convex stochastic programs in which inexpen-
sive inexact Newton steps are computed from compressed Karush-Kuhn-Tucker (KKT) systems
obtained by clustering block scenarios. Using Schur analysis, we show that the compression
can be characterized as a parametric perturbation of the full-space KKT matrix. This property
enables the possibility of retaining superlinear convergence without requiring matrix conver-
gence. In addition, it enables an explicit characterization of the residual and we use this charac-
terization to derive a clustering strategy. We demonstrate that high compression rates of 50-90%
are possible and we also show that effective preconditioners can be obtained.

Keywords interior-point · stochastic · large-scale · clustering.

1 Introduction and Basic Notation

We consider convex stochastic programs of the following form

min ϕ :=

(
1

2
yT0 Q0y0 + dT0 y0

)
+ S−1

∑
s∈S

(
1

2
yTs Qsys + dTs ys

)
(1a)

s.t. W0y0 = b0, (λ0) (1b)
Tsy0 +Wsys = bs, (λs), s ∈ S (1c)

y0 ≥ 0, (ν0) (1d)
ys ≥ 0, (νs), s ∈ S. (1e)

Here, S := {1..S} and S = |S|, y0, ν0 ∈ <n0 , ys, νs ∈ <ns , λ0 ∈ <m0 , and λs ∈ <ms . The total
number of variables is n := n0 +

∑
s∈S ns, of equality constraints is m := m0 +

∑
s∈S ms, and of

inequalities is n. The matricesQ0, Qs, s ∈ S are positive semi-definite, but the strategies derived
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can also handle linear programs (LPs). In the following, we will refer to y0 as the first-stage
variables and to ys, s ∈ S as the second-stage variables.

We assume that the scenarios are generated by sampling an underlying probability distribu-
tion such as in a sample-average approximation setting [23]. As is typical in stochastic optimiza-
tion, the number of scenarios required to achieve desired accuracies can be large and limits the
scope of existing off-the-shelf algorithms. In this work, we present strategies that compress or
cluster the scenarios adaptively inside the solver (at the linear algebra level) in order to reduce
the complexity.

To start the discussion, we derive some necessary notation and construct the linear algebra
setting. The Lagrange function of (1) is given by

L(y, λ, ν) =
1

2
yT0 Q0y0 + dT0 y0 + λT0 (W0y0 − b0)− νT0 y0

+ S−1
∑
s∈S

(
1

2
yTs Qsys + dTs ys + λTs (Tsy0 +Wsys − bs)− νTs ys

)
. (2)

Here, y := [yT0 , y
T
1 , ..., y

T
S ], λT := [λT0 , λ

T
1 , ..., λ

T
S ], and νT := [νT0 , ν

T
1 , ..., ν

T
S ]. Note that the mul-

tipliers λs, νs, s ∈ S have been implicitly scaled by S−1. In a typical primal-dual interior-point
(IP) setting, the Karush-Kuhn-Tucker (KKT) conditions are solved by relaxing the complemen-
tarity conditions. This gives the system,

∇y0L = 0 = Q0y0 + d0 +AT0 λ0 − ν0 + S−1
∑
s∈S

TTs λs (3a)

∇ysL = 0 = Qsys + ds +WT
s λs − νs, s ∈ S (3b)

∇λ0
L = 0 = W0y0 − b0 (3c)

∇λs
L = 0 = Tsy0 +Wsys − bs, s ∈ S (3d)

0 = Y0V0e− µ (3e)
0 = YsVse− µ, s ∈ S, (3f)

together with the implicit condition y0, ν0, ys, νs ≥ 0. Here, µ ≥ 0 is the barrier parameter, e is
a vector of ones of appropriate dimension, Y0 = diag(y0), Ys := diag(ys), V0 = diag(ν0), and
Vs = diag(νs). We define α0 := Y0V0e−µ and αs := YsVse−µ, s ∈ S. The search step is obtained
by solving the full-space KKT system

Q0∆y0 +AT0∆λ0 −∆ν0 + S−1
∑
s∈S

TTs ∆λs = −∇y0L (4a)

Qs∆ys +WT
s ∆λs −∆νs = −∇ysL, s ∈ S (4b)

W0∆y0 = −∇λ0L (4c)
Ts∆y0 +Ws∆ys = −∇λsL, s ∈ S (4d)
Y0∆ν0 + V0∆y0 = −α0 (4e)
Ys∆νs + Vs∆ys = −αs, s ∈ S. (4f)

This system has the well-known arrowhead form,
K1 B1

K2 B2

. . .
...

KS BS
BT1 BT2 . . . BTS K0




∆w1

∆w2

...
∆wS
∆w0

 =


r1
r2
...
rS
r0

 , (5)
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with∆wT0 := [∆yT0 , ∆λ
T
0 , ∆ν

T
0 ],∆wTs := [∆yTs , ∆λ

T
s , ∆ν

T
s ], rT0 := [rTy0 , r

T
λ0
, αT0 ], rTs := [rTys , r

T
λs
, αTs ],

and

K0 :=

Q0 A
T
0 −I

W0 0 0
V0 0 Y0

 , Ks :=

Qs WT
s −I

Ws 0 0
Vs 0 Ys

 , Bs :=

 0 0 0
Ts 0 0
0 0 0

 . (6)

In compact form,

Φw(w)∆w = −Φ(w, µ). (7)

Here, Φ(·, ·) are the KKT conditions (3), and Φw(·) = ∇wΦ(·) is the left-hand side matrix in (5).
We also define a permutation matrix Π satisfying (Πw)T = [yT , νT ].

The above representation is convenient for analysis. For implementation, however, an aug-
mented system approach might be more convenient as storage requirements are reduced and
symmetric linear algebra solvers can be used. After eliminating the bound multipliers from the
KKT system (5), we obtain

Q̄0∆y0 +AT0∆λ0 + S−1
∑
s∈S

TTs ∆λs = −ry0 (8a)

Q̄s∆ys +WT
s ∆λs = −rys , s ∈ S (8b)
W0∆y0 = −rλ0 (8c)

Ts∆y0 +Ws∆ys = −rλs , s ∈ S, (8d)

where Q̄0 := Q0 + Y −10 V0, Q̄s := Qs + Y −1s Vs, ry0 := ∇y0L − Y −10 α0, rys := ∇ysLs − Y −1s αs,
rλ0

:= ∇λ0
L, and rλs

:= ∇λs
L. The bound multipliers are recovered from

∆ν0 = −Y −10 V0∆y0 − Y −10 α0 (9a)

∆νs = −Y −1s Vs∆ys − Y −1s αs, s ∈ S. (9b)

The elimination yields an arrowhead system of the form (5) with ∆wT0 := [∆yT0 , ∆λ
T
0 ], ∆wTs :=

[∆yTs , ∆λ
T
s ], rT0 := [rTy0 , r

T
λ0

], rTs := [rTys , r
T
λs

], and

K0 :=

[
Q̄0 A

T
0

W0 0

]
, Ks :=

[
Q̄s W

T
s

Ws 0

]
, Bs :=

[
0 0
Ts 0

]
. (10)

In this case, we redefine the full iterate vector obtained from the solution of the joint system (5)-
(9) aswT ← [wT , νT0 , ν

T
1 , ..., ν

T
S ]. A similar derivation can be made for the normal decomposition

approach which is particularly attractive for linear programs and diagonal matrices Qs. In this
case, we have an arrowhead system with

K0 := W0Q̄
−1
0 WT

0 , Ks := WsQ̄
−1
s WT

s , Bs := TsQ̄
−1
0 . (11)

2 Interior-Point Framework

We seek to reduce the complexity of the full-space KKT system (7) by allowing this to be solved
inexactly. That is, we seek to generate much cheaper approximate steps satisfying

Φw(w)∆w = −Φ(w, µ) + δ(∆w), (12)

where δ(∆w) is the residual vector induced by the step ∆w. This will be done by creating a
lower dimensional representation of the KKT system.
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2.1 Inexact Step Computation

We propose to generate the compression of the KKT system by clustering the scenario blocks.
Scenario clustering or aggregation is a strategy commonly used in stochastic optimization. Ex-
isting strategies, however, perform elimination prior to the solution of the problem [9,16,14,5].
In other words, this is done outside the solver. This approach can be of great advantage because
lower bounds and error bounds can be derived and exploited to refine the solution. This has
been proposed in the context of stochastic LPs in [5,2] and in a more general setting in [25,29].
A drawback of this approach is that it can lead to significant inefficiency. The reason is that
several problems might need to be solved as the clusters are refined. We seek to overcome these
inefficiencies by performing clustering inside the solver. This will also enable the possibility to
apply aggregation in a more general setting.

To derive the inexact step computation based on clustering, we partition the full-space sce-
nario set S into C clusters where C ≤ S. Each cluster i ∈ C := {1..C} comprises a set of indexes
Ji ∈ S with |Ji| scenarios, and we have ⋃

i∈C
Ji = S. (13)

Within each cluster i ∈ C we pick an index ji ∈ Ji corresponding to the scenario representing
the cluster1, and we define R := {j1..jC} as the set of remaining or compressed scenarios. We
will use the corresponding blocks Ki, Bi, i ∈ R to assemble a compressed KKT system. Note
that |R| = C, and in the limit we have C = |S| = |R| and Ji, i ∈ C become singletons. For
each cluster we also define a scalar cluster weight ωi = |Ji|, i ∈ C. We also define the set of
eliminated scenarios E := S \ R.

Consider the following representation of the full-space KKT system (5)[
KS BS
BTS K0

] [
∆wS
∆w0

]
=

[
rS
r0

]
. (14)

Here,KS is a block diagonal matrix with entriesKi, i ∈ S. The border matrixBS stacks column-
wise the matrices Bs, s ∈ S, and the vectors rS and ∆wS stacks the corresponding vectors.

We now derive the compressed KKT system and present approximation properties of the
full-space system. The inexact step is computed from the compressed KKT system[

Ω−1R KR BR
BTR K0

] [
∆wR
∆w0

]
=

[
Ω−1R rR

r0 −BTEK
−1
E rE

]
, (15)

where ΩR = diag(ωrI | r ∈ R). The step for the eliminated scenarios is recovered from

∆wE = K−1E (rE −K0∆w0). (16)

2.2 Clustering

To see the motivation behind the proposed compressed system (15), we consider its Schur de-
composition and that of the the full-space system (14). For the full-space system we have

(K0 −BTSK−1S BS)∆w∗0 = r0 −BTSK−1S rS (17)

1 This can be, for instance, the closest point to the cluster centroid. An alternative and much simpler approach is to
pick a random point in the cluster.
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or, in compact form, Z∆w∗0 = rZ with Z := K0 − BTSK
−1
S BS and rZ := r0 − BTSK

−1
S rS . This

system will be referred to as the exact Schur system, which yields the exact step ∆w∗0 . Schur
decomposition implicitly yields the step for the second-stage variables,

∆w∗S = K−1S (rS −K0∆w
∗
0). (18)

A Schur decomposition for the compressed system yields

(K0 −ΩRBTRK−1R BR)∆w0 = r0 −BTRK−1R rR −BTEK−1E rE

= r0 −BTSK−1S rS

= rZ , (19)

In compact form we have Z̄∆w0 = rZ with Z̄ := K0 − ΩRB
T
RK

−1
R BR. This system will be

referred to as the inexact or compressed Schur system. Note the exact and inexact Schur system
have the same right-hand side.

The Schur decomposition of the compressed system implicitly gives the step for the second-
stage variables,

∆wS = K−1S (rS −K0∆w0). (20)

The inexact step ∆w0 induces a residual on the exact Schur system Z∆w0 = rZ + δZ(∆w0). In
Section 3 we analyze this perturbation in the context of the full-space KKT system (14). A direct
calculation yields an explicit characterization of the residual induced by the inexact step ∆w0

on the exact Schur system. We have,

δZ(∆w0) = Z∆w0 − rZ
= (Z − Z̄)∆w0 − rZ + Z̄∆w0

= (Z − Z̄)∆w0

= (ΩRB
T
RK

−1
R BR −BTSK−1S BS)∆w0

=
∑
i∈C

∑
k∈Ji

(BTjiK
−1
ji
Bji −BTk K−1k Bk)∆w0. (21)

The above relationship only holds for the definition of the weighting matrix ΩR corresponding
to the cluster weights ‖Ji‖, i ∈ C. We define

di(∆w0) :=
∑
k∈Ji

(BTjiK
−1
ji
Bji −BTk K−1k Bk)∆w0, i ∈ C. (22)

With this, δZ(∆w0) =
∑
i∈C di(∆w0). We also define the residual contributions,

γs(∆w0) = BTs K
−1
s Bs∆w0, s ∈ S. (23)

We define the contribution corresponding to the cluster centroids as γci (·) := γji(·), i ∈ C. Using
these definitions we have

di(∆w0) =
∑
k∈Ji

(γci (∆w0)− γk(∆w0)), i ∈ C. (24)

This quantity is a dissimilarity metric that measures the spread of the cluster elements. In the
ideal case where, for each cluster i ∈ C, all of its elements are equal we have di(∆w0) = 0, i ∈ C
and (Z − Z̄)∆w0 = 0. Also, if the spread of the elements of the cluster is small, then the resid-
ual δZ(∆w0) will be small. In other words, the compressed KKT system (15) gives consistent
behavior.
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2.2.1 Clustering Strategy

The explicit characterization of the residual (21) enables us to derive numerical strategies to
compute clusters. Our objective becomes clear: We seek to compress the scenarios in such a way
that it minimizes the residual δZ(∆w0). This is achieved by minimizing (Z − Z̄) · u along a given
direction u. In addition, we want to perform the compression inexpensively.

We consider the following strategy. For a given direction u we compute the residual contri-
butions γs(u), s ∈ S from (23). These vectors are used as scenario features in performing numer-
ical clustering. Numerical clustering strategies such as hierarchical, k-means, and fuzzy clus-
tering can be used for this. For a review of different techniques see [15]. Clustering algorithms
explicitly or implicitly seek to minimize the distortion metric

J(rs,i, γ̄i, γs(u)) :=
∑
s∈S

∑
i∈C

rs,i‖γ̄i − γs(u)‖2. (25)

Where ‖ · ‖ is the Euclidean norm and rs,i ∈ {0, 1}, s ∈ S, i ∈ C are indicator variables such
that a value of one indicates that vector s belongs to cluster i. For instance, given a set of feature
vectors γs(·), s ∈ S , the k-means algorithm seeks for the entries rs,i and centroids γ̄i that mini-
mize the distortion measure. The minimization is only approximate as the problem is NP-hard;
efficient heuristic algorithms, however, are available.

The following result establishes a connection between the residual and the distortion metric.

Theorem 1 Assume (i) a given step u and cluster information R and ωR. In addition, assume that (ii)
for each i ∈ C there exists an index ji ∈ R satisfying γ̄i = γci (u). Then, the norm of the residual δZ(u)
and the distortion metric satisfy ‖δZ(u)‖2 ≤ J(rs,i, γ̄i, γs(u)).

Bounding the residual δZ(u) we obtain

‖δZ(u)‖2 = ‖(Z − Z̄)u‖2

= ‖
∑
i∈C

di(u)‖2

≤
∑
i∈C
‖di(u)‖2

≤
∑
i∈C

∑
k∈Ji

‖γci (u)− γk(u)‖2

=
∑
s∈S

∑
i∈C

rs,i‖γci (u)− γs(u)‖2. (26)

The proof is complete by using assumption (ii) and definition (25). �
This result implies that applying a clustering scheme to the residual contributions γs(u), s ∈

S is an implicit approach to approximately minimize the residual δZ(u). The clustering pro-
cedure leads to the remaining set R with weighting ωR and to the predicted residual δp(u) =
Zu − rZ . Note that the residual can only be predicted as the vector u is not known a priori
because this is given by the actual step ∆w0 computed. For direction u, we propose to use the
step ∆w0 at the previous iteration. This choice will yield a predicted residual that we hope will
yield a good representation of the residual induced by the actual inexact step ∆w0 computed.
This can be expected asymptotically as we approach the solution but this will not be necessar-
ily the case early in the search. The hope is thus that a using given direction u at least allows
us to identify contributions of different magnitudes. The option of applying clustering directly
on the matrices BTs K−1s Bs so as to minimize (Z − Z̄) is prohibitively expensive. Mixed-integer
formulations are in principle also possible but we leave this as subject of future research.
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2.2.2 Comparison with Scenario Elimination

An interpretation of the clustering procedure is that it seeks to eliminate blocks BTs K−1s Bs that
generate similar contributions to the Schur complement. In other words, the blocks have similar
actions along the direction of the first-stage step ∆w0.

Another related observation is that some scenarios have significantly more impact than oth-
ers. This is typically observed close to the solution as activity in different scenarios reveals and
it is manifested through the magnitudes of contributions BTs K−1s Bs. Consequently, it makes
sense to try to eliminate scenarios that lead to small contributions. In particular, when a given
scenario has a larger share of active inequalities, then the corresponding block will dominate the
Schur complement. To understand this behavior, consider the normal decomposition approach.
In this case, we have Ks = Ws(Qs + Y −1s Vs)

−1WT
s . If there is little activity in this scenario then

BTs K
−1
s Bs tends to be small because some or most entries of Vs tend to zero. This property has

been exploited in a more general setting for constraint elimination in interior point solvers [26]
and in the context of stochastic programs for scenario elimination [6]. Scenario elimination from
the KKT system based on random sampling has also been recently proposed [22,3]. In these ap-
proaches, scenarios are eliminated (dropped) from the KKT matrix if the value of the primal or
slack variable tends is below a given threshold.

The proposed clustering approach is more general in the sense that clustering leads to elim-
ination of both scenarios with small and large contributions. For instance, consider the case in
which all the contributions γs, s ∈ S are all the same and large. Elimination by thresholds will be
limited in how many scenarios it can drop and it can introduce a large residual. Clustering, on
the other hand, can yield an exact step with zero residual using a single scenario. In particular,
note that the residual induced by scenario elimination by thresholds is

δEZ(u) = BTEK
−1
E BEu. (27)

If the eliminated scenarios E have large contributions γs(·) then they cannot be eliminated be-
cause they would lead to an excessively inexact step. In addition, this compromises convergence
to the solution of the original problem (1).

The clustering approach is based on the residual characterization and not on the value of the
primal and dual variables as proposed in [26,6]. This gives much more flexibility, particularly
early in the search where activity has not been fully revealed. Also, as opposed to out of the
solver clustering, the approach does not require the scenarios to be close. It only requires the
scenarios to induce similar actions on the search direction. In addition, note that we do not
compute weighted averages of the matrices to form the compressed KKT system as in [2,25]
which incurs high computational costs.

A key property of the clustering approach is that the residual δ(∆w0) = (Z − Z̄)∆w0 can
converge to zero even if the full-space and compressed Schur matrices Z, Z̄ are not the same. In
other words, the requirement is only that the two matrices are similar along the direction ∆w0.
As we will discuss in the next section, this leads to a Dennis-Moré [11] condition and enables the
possibility of retaining full-space superlinear convergence using the compressed KKT system
representation.

3 Full-Space Analysis

In this section we discuss asymptotic convergence and we explore the possibility of deriving
full-space preconditioners using compressed KKT systems. A technical question that arises is
How can we characterize the residual introduced by the inexact step on the full-space KKT system? As
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we will see, the compressed system introduces a matrix perturbation localized in the first-stage
block of the KKT system. This property will be exploited in the subsequent analysis.

3.1 Asymptotic Convergence

From the Schur analysis of the previous section we have that clustering introduces the pertur-
bation matrix

PR := ΩRB
T
RK

−1
R BR −BTSK−1S BS

= (Z̄ − Z). (28)

This is the error between the exact and inexact Schur complements. The Schur analysis also
motivates the introduction of the term Ω−1R rR in (15) to retain the gradient information and
make the right-hand sides of the Schur systems coincide.

To establish the connection with the full-space KKT system, we consider the perturbed sys-
tem [

KS BS
BTS K0 + PR

] [
∆wS
∆w0

]
=

[
rS
r0

]
. (29)

In compact form,

Φ̄w(w)∆w = −Φ(w, µ). (30)

This is a perturbed variant of (7). We have the following result, establishing the equivalence
between the compressed KKT system (15), the compressed Schur System (19), and the perturbed
full-space KKT system (29).

Theorem 2 Systems (15), (19), and (29) deliver the same first-stage ∆w0 step.

Proof: The equivalence results from Schur decomposition. The decomposition for (29) leads to(
K0 + PR −BTSK−1S BS

)
∆w0 = (K0 −ΩRBTRK−1R BR)∆w0.

This is equivalent to the left-hand side of the Schur system (19) which results from the decom-
position of (15). The right-hand side for the three systems is r0 − BTSK

−1
S rS . Consequently, the

systems deliver the same step ∆w0. �
Equivalence of the step ∆w0 also implies equivalence of the entire step ∆w because the

compressed KKT system (15) yields the same step for the remaining scenarios ∆wR as that
obtained from the perturbed system (29) and because ∆wE recovered from (16) is the same as
that obtained from the perturbed system (29).

The perturbed full-space system (29) enables a characterization of the clustering approach as
a full-space inexact Newton method. In addition, it provides a mechanism for implementation
using the sparse compressed system (15) instead of a Schur decomposition framework as will
be discussed in Section 3.2.

We now characterize the residual induced by ∆w on the full-space system.

Theorem 3 The inexact step ∆w applied to the exact full-space system (14) generates a full-space resid-
ual δ(∆w) satisfying

‖δ(∆w)‖ = ‖δZ(∆w0)‖ = ‖PR∆w0‖. (31)

In addition, the residual is localized in the first stage so that ‖K0∆w0 +BTS∆wS − r0‖ = ‖PRw0‖ and
‖KS∆wS +BS∆w0 − rS‖ = 0.
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Proof: Define Φ̄w := Φ̄w(w), Φw := Φw(w), and Φ := Φ(w, µ). We have that Φ̄w∆w − Φ = 0.
Following a similar procedure as in (21), we obtain

δ(∆w) = Φw∆w + Φ

=

[
KS∆wS +BS∆w0 − rS
K0∆w0 +BTS∆wS − r0

]
= (Φw − Φ̄w)∆w − Φ+ Φ̄w∆w

= (Φw − Φ̄w)∆w

=

[
0 0
0 −PR

] [
∆wS
∆w0

]
=

[
0

−PR∆w0

]
. (32)

The result follows by taking norms. �
We highlight that it is not necessary to form the Schur complement to evaluate the residual.

All that we need is ‖K0∆w0 + BTS∆wS − r0‖. This above result is also important because it
implies that the quality of the full-space step is the same as the quality of the first-stage step.

The compressed KKT matrix does not need to exactly match the full-space matrix in or-
der to achieve superlinear convergence. Define δk := δ(∆wk). The requirement is that ‖δk‖ =
‖Φ(wk) − Φ̄(wk)‖ = o(‖∆wk‖). This in turn requires the cluster sequence Rk to satisfy ‖δk‖ =
‖PRk∆wk0‖ = o(‖∆wk‖). In practice, this can be enforced in a number of ways such as to require
that ‖δk‖ is a fraction of the right-hand side ‖δk‖ ≤ `k‖Φ(wk, µk+1)‖ for {`k} converging to zero
[10]. This can be achieved by setting `k = min(0.5, ‖Φ(wk, µk+1)‖). The refinement can be done
by increasing the number of clusters since in the ideal case where |Ck| = |S| = |Rk| we obtain
exact Newton steps with δk = 0. Of course, this discussion assumes that the sequence {µk} is
updated at least superlinearly [24,27,1].

3.2 Preconditioning and Scalability

Because compression introduces a matrix perturbation, the quality of the delivered steps is
expected to degrade as the KKT system becomes larger and ill-conditioned. The effect of ill-
conditioning can be ameliorated by using iterative refinement or by using the compressed sys-
tem to precondition the full-space system under an iterative linear algebra setting. In an itera-
tive linear algebra setting, the solver will pass a vector u to which we apply the preconditioner
y = Φ̄−1w u. If the preconditioner is exact we have y∗ = Φ−1w u. From Theorem 3 we have that for
a given vector u the inexact system delivers a vector yT = [yTS , y

T
0 ] satisfying

Φwy = u+ (Φw − Φ̄w)y = u+ Py. (33)

Here, P = diag(0,−PR) and P = (Φw − Φ̄w). We also have Py = [0 − PRy0] and

y − y∗ = Φ−1w Py

= Φ−1w (Φw − Φ̄w)y

= (I − Φ−1w Φ̄w)y. (34)

From the first relationship we have that y∗ = (I − Φ−1w P )y. This condition is typically found
in an iterative refinement analysis which states that y converges to y∗ if the spectrum of Φ−1w P
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is less than one. In other words, it is possible to refine the inexact step for mild matrix pertur-
bations. From the last relation we have that the error y − y∗ induced by the inexact step will
be small if the eigenvalues of Φ−1w Φ̄w cluster around one, as expected. This last equation also
provides a connection between the eigenvalues of the inexact and exact matrices and the matrix
perturbation. We have that Φw(y− y∗) = (Φw − Φ̄w)y and from the Wielandt-Hoffman Theorem
[12] we have that, ∑

k

(λk(Φw)− λk(Φ̄w))2 ≤ ‖Φw − Φ̄w‖2F

= ‖P‖2F = ‖PR‖2F . (35)

Here, ‖ · ‖F is the Frobenius norm, and k is the eigenvalue index. We thus have that the precon-
ditioner quality improves as the number of clusters increases.

A clear benefit of compression arises in the case where the full-space system cannot be fac-
torized in memory but compression enables this option. This is particularly helpful in problems
with a large dimensionality in the first-stage where Schur decomposition is not scalable. This
is true for, instance, in problems with first-stage dimensionality beyond O(103) where the se-
rial factorization of the Schur complement is not possible or too expensive [18]. If the sparse
factorization of the compressed system is possible then we can use this as preconditioner for
the full-space KKT system within an iterative framework and bypass the Schur factorization
bottleneck.

4 A Clustering-Based IP Algorithm

Given a full-space inexact step ∆wk we compute a steplength α ensuring that Π(wk+α∆wk) ≥
(1 − τ)wk, where τ ∈ (0, 1) is a fraction-to-the-boundary parameter. To accommodate inexact
steps, we use the following merit function to measure progress toward the solution [21,8]:

Ξ(wk) := ‖∇yL(wk)‖+ ‖∇λL(wk)‖+ ‖Y kV ke‖. (36)

We define a reduction ratio for the merit function η ∈ (0, 1]. At each iteration k we start with
minimum number of clustersCmin and try to compute a cheap step. If the step reduces the merit
function and if the residual is not too large, then we proceed. If not, we update the number of
clusters C ← min {C +∆C,S} where ∆C > 0 is a cluster number update rate. The algorithm
is summarized below.

Algorithm IP-CLUSTER. Given ε ≥ 0, η, τ , Cmin, and ∆C, DO:

1. Compute Ξ(wk) and `k.
2. IF ‖Ξ(wk)‖ ≤ ε TERMINATE. Otherwise, CONTINUE.
3. Set number of clusters Ck := Cmin.
4. Compute cluster informationRk and ωkR using ∆wk−1.
5. Compute step ∆wk using compressed system (15) and (16).
6. Determine maximum step size α ≥ (0, 1] satisfyingΠ(wk+α∆wk) ≥ (1−τ)wk and compute

trial iterate wk+ ← wk + α∆wk.
7. IFΞ(wk+) ≤ η Ξ(wk) AND ‖δk‖ ≤ `k‖Φ(wk, µk+1)‖ACCEPT trial stepwk+1 ← wk+, UPDATE
µk+1 ← µk + ∆µk, SET k ← k + 1, and RETURN TO 1). Otherwise, RETURN to 3), and set
Ck ← min

{
S,Ck +∆C

}
.
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At each iteration, the algorithm reverts to an exact step using all scenarios if sufficient progress
is not achieved. If an iterative linear algebra setting is used in step 5) we have the following
strategy. If a maximum number of linear algebra iterations is reached we TERMINATE, set
Ck ← min

{
S,Ck +∆C

}
and we RETURN TO step 3). We do this in order to refine the precon-

ditioner by increasing the number of clusters.
The proposed framework is general and is only intended to provide a mechanism to incor-

porate the clustering procedure within an inexact interior-point framework. The framework al-
lows for multiple specializations including barrier parameter update [19,13,26,1,21,24], steplength
determination [8,20], strategies to promote local and global convergence [27,4,21], and more
general termination criteria [28]. We do not consider these refinements here because we focus
on the quality of the compressed system. For implementation details of an inexact interior point
algorithm we refer the reader to [7].

5 Numerical Studies

To illustrate the performance of the clustering approach, we consider stochastic variants of prob-
lems obtained from the CUTEr library, the benchmark problems collected by Linderoth, Wright,
and Shapiro (LWS) reported in [17], and network expansion problems.

The implementation follows the IP-CLUSTER algorithm. We use Mehrotra’s heuristic to up-
date the barrier parameter adaptively [19]. We also use equal steplengths for primal and dual
variables. We use a single-link hierarchical clustering algorithm to perform clustering. While
the k-means algorithm is theoretically sound, we found it to be unreliable and unstable in large
problems as its performance strongly depends on the initialization procedure. The inexact IP
algorithm is implemented in Matlab and we use this for demonstration purposes in small to
medium problems. We have deactivated the step acceptance tests of step 7) in order to achieve
a more systematic analysis of the effect of inexactness. By activating the tests the number of iter-
ations vary somewhere in between the inexact and exact results presented here and the results
are less informative.

5.1 CUTEr and LWS Problems

The deterministic CUTEr QP problems have the form

min
1

2
yTQy + dT y, s.t. Ay = b, y ≥ 0. (37)

We generate a stochastic version of this problem by defining b as a random vector. We create
scenarios for this vector bs, s ∈ S using the nominal value b as mean and a standard deviation
±σ = 0.5b. We then formulate the two-stage problem

min eT y0 + S−1
∑
s∈S

1

2
yTs Qys + dT ys (38a)

s.t. Ays = bs, s ∈ S (38b)
ys + y0 ≥ 0, s ∈ S (38c)

y0 ≥ 0. (38d)

We transform this problem into form (1) by adding slack variables. We also consider the
two-stage LPs GDB, LANDS, 20TERM, and SSN from the LWS benchmark [17]. We did not
considered the STORM problem as this is too large for the existing implementation.
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Table 1 Convergence history of inexact and exact interior-point algorithms for LOTSCH problem with 100 scenarios.

Exact Inexact

k ϕk Φk |R|k ϕk Φk ‖δk‖ ‖δkp‖ ‖Pk
R‖F |Rk|

1 1.29E+02 5.03E+04 100 1.29E+02 5.03E+04 4.69E-11 4.03E-12 1.01E-13 25
5 6.78E+03 1.02E+01 100 6.62E+03 9.90E+00 6.69E-01 2.63E+00 2.89E-02 25

10 4.94E+03 4.34E-01 100 4.92E+03 9.93E-01 1.00E+00 1.09E+00 3.68E-01 25
15 4.77E+03 4.75E-05 100 4.77E+03 4.42E-02 4.39E-03 6.48E-03 8.98E-01 25
16 4.77E+03 2.31E-06 100 4.77E+03 4.97E-03 7.34E-05 5.98E-04 6.35E-02 25
17 4.77E+03 1.81E-08 4.77E+03 8.25E-05 1.26E-05 4.21E-05 1.28E-01 25
18 4.77E+03 1.26E-05 1.27E-06 1.84E-06 1.95E-01 25
19 4.77E+03 1.27E-06 2.39E-08 1.47E-08 1.39E-02 25
20 4.77E+03 2.39E-08

We first consider a test using the stochastic LOTSCH problem to illustrate the behavior of
the algorithm. In this case we use 100 randomly generated scenarios. The convergence history
of the inexact and exact algorithms is presented in Table 1. The exact algorithm uses the entire
set of scenarios and converges in 17 iterations. The inexact version uses only 25 scenarios to
form the compressed system per iteration and converges in 20 iterations. Note that the actual
residual ‖δk‖, the predicted residual ‖δkp‖, and the matrix perturbation ‖P kR‖F are negligible
in the first iteration. The reason is that all the variables were initialized at the same value (all
problem variables were initialized at a value of 100) and thus all the block scenarios are the
same. This demonstrates that clustering can identify this case and take exact steps. We also note
that the Schur complement error does not converge to zero. Superlinear convergence, however,
is achieved.

In Figure 1 we present the distribution of the contributions ‖γs(·)‖, s ∈ S at iteration 5 and at
the final iteration. Note that the distribution changes significantly throughout the search. Con-
sequently, the clusters should be updated adaptively at each iteration. The dashed line indicates
the final convergence tolerance of 1× 10−7. Note that even if most of the contributions are well
above the tolerance, most of them can be compressed and we can achieve an accurate solution.
This is a key advantage over scenario elimination procedures.

In Figure 2 we present the history for the actual and predicted residuals. As can be seen,
the clustering strategy does a good job at predicting the magnitude of the actual residual. This
indicates that obtaining clusters by using the direction u = ∆wk−10 is a reasonable strategy.

We ran the inexact and exact algorithms for some problems of the CUTEr family and a cou-
ple from the LWS benchmark. Our tests use 100 scenarios in the small and medium cases and
50 scenarios in the large cases. In all cases we compress the KKT system by 50%. The number
of iterations is presented in Table 2. The inexact algorithm has similar performance as the exact
counterpart in all instances. For the larger problems 20TERM and SSN we noted that compres-
sion rates of only 10-20% were possible due to ill-conditioning. We analyze these two problems
in the preconditioning section 5.3.
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Table 2 Number of iterations for stochastic variants of CUTEr set and LWS problems with 50% of scenarios eliminated.

Problem S n Exact Inexact
QPTEST 100 505 17 17
ZECEVIC 100 606 20 20
HS76 100 707 19 19
GBD 100 1017 19 19
HS53 100 1110 14 14
LANDS 100 1204 23 24
LOTSCH 100 1212 17 20
QAFIRO 100 5151 34 38
HS118 100 5959 37 38
DUAL1 50 8670 17 21
DUAL2 50 9792 16 18
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Fig. 1 Distribution of residual contributions δs, s ∈ S for LOTSCH problem. Left panel is iteration 5 and right panel is
final iteration. Dashed line indicates the convergence tolerance.
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Fig. 2 History of predicted and actual residuals for LOTSCH problem.

5.2 Network Expansion

In this problem family, we determine the optimal capacities for generators and branches that
satisfy the random demands across the network. The problem has the following structure:

min dTg∆g + dTp∆p+ S−1
∑
s∈S

cTg gs (39a)

s.t. Pps +Ggs = Dds, s ∈ S (39b)
pL ≤ ps +∆p ≤ pU , s ∈ S (39c)
gL ≤ gs +∆g ≤ gU , s ∈ S (39d)
∆g ≥ 0 (39e)
∆p ≥ 0. (39f)
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Here, ∆g and ∆p are the expansion capacities for generators and branches, respectively. The
corresponding costs are dg and dp. The generation levels in each scenario are given by gs with
costs cg . The random demands are ds. The matrices P,G and D are incidence matrices for the
branches, generators, and demands, respectively. The branch capacities satisfy pL = −pU be-
cause we allow for bidirectional flows. We have created a family of network problems of in-
creasing size. The networks are radial with nR nodes. Networks of nR = 5,6, and 10 radial
nodes are depicted in Figure 3. The internal branches are represented by the dashed lines. The
red circles are demands, and the blue circles are generators.

1

2

2

3

1

1

25

34

1

6

4

35

3

4 1

2

2

1

8

6

4

10 2

9

57

3

1
3

2

1

2

5

1

4

3

6

3

2

Fig. 3 Topology of radial network expansion problems.

The distribution of contributions ‖γs(·)‖ at the solution for the three network problems is
presented in Figure 4. Note that most of the contributions are well above the final tolerance and
there are strong dominating clusters. We have observed that it is not the magnitude of the con-
tributions but the spread of γs(·) that tends to influence clustering performance more strongly.
In Table 3 we compare the number of iterations for the inexact algorithm as a function of the
number of eliminated scenarios |E|. Performance is consistent for the two smaller networks and
compression rates of up to 90% can be achieved. For the largest network we can compress up
to 80% of the scenarios and achieve convergence.
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Fig. 4 Distribution of residual contributions ‖γs(·)‖, s ∈ S at final iteration for problems with 5 (left), 6 (center), and 10
(right) radial nodes. Dashed lines indicate convergence tolerance.



Clustering-Based Interior-Point Strategies for Stochastic Programs 15

Table 3 Number of iterations as function of |E| for radial network problems with S = 100 scenarios.

|E| nR = 5 nR = 6 nR = 10

50 13 13 16
60 14 14 17
70 13 15 18
80 13 15 24
90 16 17 -

Table 4 Total number of QMR iterations for DUAL1 with low variance, SSN, and 20TERM. S = 50 scenarios. Avg.
QMR/IP denotes average number of QMR iterations per interior-point iteration.

Problem Strategy n |E| IP Iterations QMR Iterations Avg. QMR/IP
DUAL1 Unpreconditioned 8,670 - 17 13,462 791.9
DUAL1 Elimination 8,670 25 17 108 6.3
DUAL1 Clustering 8,670 25 17 46 2.7
DUAL1 Elimination 8,670 35 17 162 9.5
DUAL1 Clustering 8,670 35 17 58 3.4
20TERM Clustering 35,389 25 33 156 4.7
SSN Clustering 38,263 25 54 287 5.3

5.3 Preconditioning

To demonstrate the preconditioning capabilities of the clustering approach in the larger prob-
lems, we applied a quasi-minimum residual (QMR) algorithm with constant tolerance of 1 ×
10−6 and a termination tolerance of 1 × 10−5. We use problems DUAL1, 20TERM, and SSN
using S = 50 scenarios. We compare the total number of QMR iterations required for conver-
gence for unpreconditioned and cluster preconditioning variants. In addition, we compare the
performance of a preconditioner generated by eliminating (dropping) the block scenarios with
the |E| largest contributions ‖γs(·)‖. This comparison demonstrates that clustering gives more
accurate compressed KKT matrices than scenario elimination. The results are presented in Table
4. The number of QMR iterations is reduced almost by a factor of 2 for the |E| = 25 case and by
a factor of 3 for the |E| = 35 case which corresponds to an elimination of 70% of the scenarios.
Higher percentages lead to unacceptable QMR performance. In particular, we require that less
than 100 QMR iterations per interior-point iteration. We can also see that the preconditioner
performance for SSN and 20TERM is acceptable for a compression rate of 50%. These are the
largest problems considered which include 38,263 and 35,389 variables, respectively.

To demonstrate the robustness of the clustering approach, we increase the number of scenar-
ios for DUAL1 to S = 100 and we increase the variance from±σ = 0.5b to±σ = b. This problem
has a total of 17,170 variables and inequality constraints and 8,600 equality constraints. The in-
crease in variance drastically increases activity and makes the KKT matrix much more difficult
to approximate. The results are summarized in Figure 5 where we present the QMR iteration
histories for the cases with |E| = 30 and |E| = 50. The number of iterations is consistently be-
low 50, and the number of iterations is minimal at the beginning of the search. Interestingly,
the number of iterations decreases as we approach the solution. This is an unexpected result
because ill-conditioning tends to affect the performance of iterative solvers as the barrier pa-
rameter converges to zero. This demonstrates that the clustering approach has the potential of
leading to effective preconditioners.

We did not explore larger numbers of eliminated scenarios as the performance of QMR be-
came unacceptable. Consequently, the largest percentage of eliminated scenarios leading to ac-
ceptable performance was 50%. We performed another study for DUAL1 with S = 30 total sce-
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Fig. 5 History of QMR iterations for DUAL1 problem with high variance and S = 100 scenarios.

narios. The largest percentage of eliminated scenarios with acceptable QMR performance was
33%. This indicates that the benefits of clustering become more pronounced as the number of
scenarios is increased, a result that was corroborated in other problem instances. Unfortunately,
the existing implementation does not allow us to explore these regimes.

6 Conclusions and Future Work

We have presented an inexact interior point framework for stochastic convex programs. The
framework computes inexpensive steps by performing clustering on the block scenarios form-
ing the arrowhead Karush-Kuhn-Tucker (KKT) system. We showed that the compression can
be characterized as a parametric perturbation of the KKT matrix. This allows for the possibility
to achieve superlinear convergence without requiring matrix convergence. We derive a clus-
tering strategy using an explicit characterization of the residual and we demonstrate that this
works well in practice. We also demonstrate that clustering can yield large compression rates
and can work as an effective preconditioner. In a family of small to medium test problems we
have found that compression rates of 50-90% are possible. For the larger test problems precondi-
tioning performance is acceptable with compression rates of up to 50%. As part of future work,
we will develop parallel implementations to explore clustering potential in regimes with large
numbers of scenarios and we will extend the clustering approach to a more general nonlinear
programming setting.
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